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NASA TT F-13,585 

ENERGY STORAGE CAPABILITIES OF 
SUPERCONDUCTORS I N  VIEW OF HIGH POWER DISCHARGE 

J, Sole 

ABSTRACT: 

associated energy r e l ease  a t  high power. The discussion 
draws a p a r a l l e l  and comparison between ex is t ing  energy 
s torage mechanisms (condensers, ro t a t ing  machines, r eac to r s ,  
b a t t e r i e s ,  explosives) and the  so-called superconductors as 
seen from French experimental r e su l t s .  Direct comparisons 
are drawn by using material  evaluations,  performance equa- 
t i ons  and cos t  p r i ce  r a t io s .  

This repor t  contains an " in  depth" treatise on 
' energy s torage capab i l i t i e s  of superconductors and the  

INTRODUCTION - /I* 

A t  t he  present t i m e ,  i n  order t o  s t o r e  e lec t r ic .energy  and release it a t  

high power i n  a r e l a t i v e l y  shor t  t i m e ,  with a capab i l i t y  of power extension up 

t o  about t en  nanoseconds, w e  u t i l i z e  ba t t e r i e s  of condensers. This is the  case, 

f o r  example, f o r  t he  energization of l a se r s  o r  f o r  t he  exci ta t ion of plasma 

experiments....but i n  s p i t e  of the  considerable progress t h a t  has been made i n  

recent years i n  the  province of d i e l e c t r i c s ,  t he  energy s to r ing  capabi l i ty  of 

condensers remains very limited. Today, other  so lu t ions  are envisaged. So as 

t o  be able  t o  compare them i n  t h e i r  t rue  perspective w e  are going t o  very b r i e f l y  

examine t h e  pr inc ipa l  ones. Beginning with condensers, w e  w i l l  terminate with 

superconductors which w e  understand....because it is our ideas  which have sug- 

gested, f o r  some years i n  France, ' the  first tests of s tored  energy u t i l i z a t i o n ,  

with rapid release, i n  impedances of external use. 

0 

CONDENSERS 

Energy Storage 

Present CaD abi  15 t i es  

W e  use, for example, f o r  supply of experiments on plasmas, condensers of 

American manufacture. Their cha rac t e r i s t i c s  are shown i n  Table 1. 

* Numbers i n  the  margin ind ica te  pagination i n  the  foreign text. 
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For s to r ing  a given energy w e  assemble the  s u i t a b l e  number of condensers. 

These condensers correspond t o  a material t h a t  has been se lec ted  as pos- 

s e s s ing  . in te res t ing  c h a r a c t e r i s t i c s  f o r  energy s torage  (and its release) from 

among present  market material .  W e  can list the  important q u a l i t i e s  as follows: 

dens i ty  of s tored  energy : some Lens of joules  per l i t e r  

c o s t  per s tored  jou le  : of the  order of a f e w  F 

TABLE 1. - /2 

Manufacturer Capacity Service Stored energy Density of Cost of 
Voltage per  condenser s tored  i n s t  a1 led 

C v W energy jou le  
micro- k i lovo l t  k i lo jou le  - W Condenser 

farad V supplied 
j o u l e / l i t e r  

HAEFELY 15 20 3 72 1.47 
G.E. 1 50 1.250 30 4.40 
TOBE 
DEUTSCHMANN 0.85 1 20 6 23 3 034 

When w e  assemble such condensers, t he  densi t f  of stor&d energy decreases 

and the  c o s t  per  i n s t a l l e d  jou le  increases ( t h i s  is due t o  cabl ing arrangement 

f o r  s a fe ty ,  t o  the  support of t h e  assembly, and i n  preserving the  assembly t o  

assure supply and d i s t r i b u t i o n  (of power)). 

Prksent L i m i t s  

If w e  t r y  t o  determine the  maximum energy dens i ty  t h a t  can hopefully be 

s tored  with condensers, the  problem is presented i n  the  following way: 

The t o t a l  s tored  energy i n  a condenser is  given by one of t he  two following 

expressions: 

dv = 5 cv2 
E2 c e  - 

o r 2  

W = t o t a l  s tored  energy ( jou le )  

v = t o t a l  volume of condenser d i e l e c t r i c  cons t i tuents  (m ) 
3 

= r e l a t i v e  d i e l e c t r i c  constant of t h e  condenser d i e l e c t r i c  
cons ti tuents 6r 
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9 = absolute d i e l e c t r i c  constant of the  vacuum ( 1/36 IT 10 u n i t s  MKSA) 
0 

. dv = element of volume of the  d i e l e c t r i c  i n  which region exis ts  the  
e l e c t r o s t a t i c  f i e l d  E (expressed i n  volts/meter.and a function of 
t he  coordinates of the  element dv) 

C = capaci ty  of t he  condenser thus cons t i tu ted  (farctas) 

V = charge voltage of the  condenser ( v o l t s )  
.. 

W e  v e r i f y  t h a t  t h i s  energy, which'is s tored  i n  the  d i e l e c t r i c  according t o  

( l ) ,  is only dependent on volume ( v ) ,  d se l ec t r i c  (c  1, and some value of applied 

f i e l d  E. 
r 

A s  a matter of fact w e  w i l l  a t t a i n  present l i m i t s  i n  s e l ec t ing  from among 

exis t ing  d i e l e c t r i c s ,  t he  one which interposed i n  the  condenser framework w i l l  

enable t h e  in t eg ra l  of (1) t o  determine the  m a x i m u m  value. I n  the  case where 

the  condenser is const i tuted by frame p la t e s  i n  p a r a l l e l ,  the  f i e l d  E is uniform 

between the  p l a t e s  and in t eg ra l  (1) is writ ten: 

2 E2 f f f  5;\ 

W = G  e - 
o r 2  

Y 

V o r 2  . d v = G  G - 
J J J (v> 

This energy W is: 

- proportional t o  the  volume of t he  d i e l e c t r i c  v ( f o r  a given f i e l d  and 

d i e l e c t r i c ) ;  

- proportional t o  the  sq i a re  of f i e l d  E ( i n  a given volume dv and f o r  a 

given d i e l e c t r i c  ); 

- proportional t o  

W e  can increase it: 

- by increasing the  volume v of t h e  d i e l e c t r i c ,  which increases proport ional ly  

( i n  a given volume and f o r  a given f i e l d ) .  r 

t h e  encumbrance ; 

- by increasing t h e  electric f i e l d  E t o  which t h e  d i e l e c t r i c  is subject.  

W e  are then l imited by t h e  s t rength  of the  d i e l e c t r i c ;  

- by increasing C e W e  are then l imited by t h e  values of e f o r  ex is t ing  r r 
materials. 

The s tored  energy per u n i t  volume of d i e l e c t r i c  is from ( 2 )  equal to: 
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W E2 - = e  e - 
V o r 2  

2 
This energy w i l l  now be m a x i m u m  when the  product e E is maximum. But f o r  r 

a given d i e l e c t r i c  t h i s  product w i l l  be maximum when the  applied f i e l d  E is 

i t s e l f  maximum, t h a t  is, a t  the  l i m i t  equal t o  the  s t rength  E of t he  d i e l e c t r i c .  

In  examining the  pr inc ipa l  d i e l e c t r i c s ,  the most i n t e re s t ing  permit, by means of 
.W 

re la t ionship  (31, the  ca lcu la t ion  of maximum energy dens i ty  max t h a t  we can 

hope t o  s t o r e  by un i t  volume. Table 2 shows t h e  r e su l t s .  W e  have taken f o r  

d i e l e c t r i c  s t rengths ,  mater ia ls  which have exhibited highest  observed values c11. 

V 

TABLE 2. 

Kind of M a x i m u m  energy 
d i e l e c t r i c  8 densi ty  

Volt/meter r W m a x  - 
V 

j o u l e / l i t e r  

140 8 Printed 
Paper 2.23 1.2 x io 

water 100 1.5 x io ' 100 
D i s t  i l l e d  

Titanium 
with Ba 
or Sr 1800 107. 790 

1080 8 

8 

8 

Polystyrene 2.56. 3.1 x 10 

340 
e 2190 

Mica 3 1.6 x io 
Lucite 3 4 x 10 

I n  p rac t i ce ,  the  values given i n  Table 2 w i l l  never be reached because of L4 
r i s k  of d i e l e c t r i c  cracking. 

by u n i t  volume of d i e l e c t r i c ,  w i l l  be, therefore ,  with ex is t ing  mater ia ls  r a t i n g  

less than 3 k j / l i t e r .  

The m a x i m u m  energy t h a t  w i l l  be s tored  p rac t i ca l ly ,  

With condensers having been u t i l i z e d  f o r  a r e l a t i v e l y  long t i m e  and dielec-  

t r ic  having a t t a ined ,  f o r  the  present ,  a high degree of performance, we have 

l i t t l e  expectation of seeing great improvement i n  the  near future.  
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Energy Release 

The s tored  energy can be released i n  any i n t e r v a l  of t i m e  whatever, provided 

t h a t  it exceeds the  proper period of o s c i l l a t i o n  of t h e  condensers i n  s h o r t  

c i r c u i t .  For very great s tored  energy, i f  w e  do not take s u f f i c i e n t  precautions,  

the  proper period of the  condenser assembly can be higher based on the  fact t h a t  

t h e  connections m a k e  up an equivalent induction c o i l  with greater than t h e  in-  

herent  vol tage (considering discharge dis tances) .  

Another intervening parameter i n  the  use of condensers a t  t h e  peak of t h e i r  

capab i l i t i e s :  

Their durat ion of l i f e ,  which happens t o  be more or less s h o r t  because: 

- t he  charge vol tage and the  vol tages  a t ta ined  during t h e  discharge are 

nearer the  region of vol tage breakdown; 

- t h e  reverse  vol tage a t ta ined  during t h e  discharge is nearer the  m a x i m u m  

admi ss i b 1 e revers e vo 1 t age ; 

- t h e  del ivered power is higher. 

ROTATING MACHINES 

Energy Storage 

The energy is s tored  i n  k i n e t i c  form i n  a r o t a t i n g ,  mechanical flywheel. 

Some p r a c t i c a l  l i m i t s  of s to rab le  energy can be obtained as  a function of t he  

mechanical s t rength  of materials ex i s t ing  a t  the ,p re sen t  t i m e  (of w e i g h t  and 

dimensions of t h e  flywheel). W e  w i l l  not repeat  t h i s  work here [21. 

Energy R e l e a s e  

A n  electric machine connected t o  t h e  mechanical flywheel converts mechan- 

i c a l l y  s tored  energy t o  electric energy. The conversion should be made i n  a 

very sho r t  t i m e  t o  ob ta in  a high power. The r o t a t i n g  p a r t s ,  r i g i d l y  f ixed ,  are 

subjected t o  enormous cons t r a in t s  which l i m i t  the  m a x i m u m  r e a l i z a b l e  power. 

Naming some c h a r a c t e r i s t i c s  of a se l f -exc i t ing ,  asynchronous generator C51 
designed to supply intense magnetic f i e l d s  i n  t r a n s i e n t  operation: 

- energy s torage  > 5 M.P 

5 



-2 - t i m e  of cur ren t  r i se  ZL 10 s 

- l i m i t i n g  voltage 10,000 V 

One observes t h a t  t he  t i m e  of cur ren t  r i se  is r e l a t i v e l y  long. 

This machine is described as possessing the  following advantages over t he  

homopolar machine with incorporated transformer (same pr inc ipa l  €or  energy 

/5 - 
storage,  t he  difference res id ing  i n  the  electric machine which converts t he  

energy): 

- s impl ic i ty  of t h e  ro to r  which is s o l i d  and does not involve winding; 

- no f l u i d  contacts  which avoids some e1,ectricity loss;, 

- capabi l i ty  of immediately obtaining, without a transformer, voltages 

of high output;  

- good efficiency. 

On the  other  hand the  following d i f f i c u l t i e s  a.qe s ign i f icant :  

- considerable mechanical cons t ra in ts  appear during the  regeneration , 

of energy ; 

- d i f f i c u l t i e s  i n  reducing the  leakage flow t o  a minimum between r o t o r  

and s t a t o r .  

From observations of these machines, it should be noted t h a t  i n  e lectro-  

technique the  modern tendency is t o  replace ro t a t ing  machines with s ta t ic  machines, 

whenever possible.  Moreover, the  use of ce r t a in  ro t a t ing  machines cannot prevent 

t he  use of static transformers. These transfor&ers should, then, sus t a in  a l l  

the  power. On the  other  hand, t h e  ro t a t ing  machine is subject  t o  the  w e a r  of 

its mechanical p a r t s  and demands e s sen t i a l  maintenance. 

REACTORS 

They are very l imited i n  power. Electrochemical s torage b a t t e r i e s  are ' 

very superior i n  t h i s  domain a t  t h e  present t i m e .  

STORAGE BATTERIES 

The present  best  s torage b a t t e r i e s  f o r  t he  use of great power are made of 

gold and zinc c31. 
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Energy Storage 

The usable s tored  energy i n  the  discharge of power is less than 55 Wh/kg 
. _  

f o r  a ce l l  weighing 2.5 kg, volume 1 , 2 _ l i t e r s ,  and c o s t  about 5 F. 

This represents  a s tored  energy 

W - = 55 x 3600 < 200 kj/kg m 

Which represents  per u n i t  volume 

' < 2oo 2*5 = 400 k j / l i t e r  of s torage  ba t te ry  
3v 1.2 

The c o s t  per  i n s t a l l e d  jou le  P is therefore  

950 
200,000 x 2.5 

P =  = 0.002 f / jou le  

For very great s tored  energies ,  the cos t  per i n s t a l l e d  jou le  increases  - /6 
because of necessary connections and aux i l i a ry  i n s t a l l a t i o n s  which are required 

by s torage b a t t e r i e s  of major' importance. 

Energy Release 

Under fu tu re  working condi t ions,  the peak current  is of t he  order of 1600 A 

per cell  a t  a voltage of t h e  order of 1.2 V; t h e  peak power is therefore  of t h e  

order of: 

But t he  durat ion of s torage ba t t e ry  l i f e  under these working conditions is 

l imited t o  40 operations,  

EXPLOSIVES 

Energy Storage 

Energy s torage  is of t h e  order of 5 kj/gram. 

Energy Release 

The p r a c t i c a l  problems can become considerable i f  we wish t o  u t i l i z e  t h i s  

energy with a s u i t a b l e  eff ic iency.  In  general, it r e s u l t s  i n  the  des t ruc t ion  of 

t he  apparatus used. For t h i s  reason we w i l l  not pursud t h i s  examination fur ther .  
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S UPERC ONDUCTOW 

Since the  appearance of t he  f i r s t  superconductor materials for high cr i t ical  

f i e l d s  (about 19601, numerous labora tor ies  have begun the  u t i l i z a t i o n  of these 

materials t o  achieve windings necessary f o r  obtaining intense magnetic f i e lds .  

These in tense  f i e l d s ,  as a matter of f a c t ,  se t  i n  ac t ion  important magnetic 

energies which could cause the  explosion of windings and 

pa l  e f f o r t s  of these labora tor ies  was then directed,towards t h e  s t a b i l i z a t i o n  of 

these windings by t h e  introduct ion of quan t i t i e s  of copper i n  sho r t - c i r cu i t  ( a  

r e l a t i v e l y  important and convenient way t o  p ro tec t  the winding from t r a n s i t i o n  

by induced cur ren ts ,  and l imi t a t ion  of s teep  gradients  i n  temperature by heat  

i n e r t i a ) .  

accidents. The pr inc i -  

By way of example: 

- a s m a l l  cy l ind r i ca l  winding, made i n  t h e  United S t a t e s ,  designed t o  

produce an induction of 100,000 gauss i n  a volume of some cm3 and with ex terna l  

measurements of about 12 c m  i n  diameter and 6 c m  i n  height. 

m a t t e r  of f a c t ,  an electrical energy of 9000 joules ;  

It  s tored ,  as a 

- another cy l ind r i ca l  c o i l  designed t o  produce a high magnetic induc- 

t i o n  i n  a l a r g e  volume, with external  measurements of about 50 c m  i n  diameter 

and 50 c m  i n  height. I t  s to red ,  as a matter of fact ,  an energy of 1 megajoule. 

This a l ready represents  energy dens i t i e s  ( involuntar i ly  accomplished) t h a t  

are very superior  by some tens  of joules  per l i ter  t o  t h a t  which can be s tored  

using condensers (Table 1). Furthermore, these c o i l s  have not been conceived 

f o r  s t o r i n g  energy and w e r e  not optimized f o r  that .purpose.  On the  other  hand, 

t h e i r  s t r u c t u r e  is such t h a t  they are incapable of releasing t h i s  energy i n  an 

ex terna l  c i r c u i t  i n  a r e l a t i v e l y  sho r t  i n t e rva l  of t i m e ,  and with good eff ic iency.  

Capabi l i t i es  of Superconductors 

Energy Storage . ---------__--- 
If w e  t r y  t o  determine the  m a x i m u m  energy dens i ty  t h a t  can hopefully be 

s tored  by means of superconductors, t he  problem is presented i n  the  following 

fashion: 

8 



The t o t a l  s tored energy i n  a superconductor is given by one of t he  two 

following expressions: 

W = t o t a l  s tored  energy ( jou le )  

v = volume of space included by the  magnetic induction B 

= re la t ive  magnetic permeability of the  space i n  which the  induction 
B occurs ’r 

= absolute permeability of t he  vacuum ( 4  ‘n x lom7 un i t s  MKSA) 
IJ’0 

dv = element of volume of the  space i n  which the  occurring induction B 

(expressed i n  Tesla) is a function of the  coordinates of the  element dv 

L = coef f ic ien t  of c o i l  induction of t h e  superconductor c i r c u i t  (henry) 

I = current  flowing i n  t h e  superconductor c i r c u i t  (ampere) 

Since B = 0 i n  t h e  superconductor (Meissner Ef fec t )  t h i s  energy W is s tored  

e n t i r e l y  outs ide of t he  superconductor material i t s e l f ,  t ha t  is, i n  the  space 

amplexicaul t o  the  co i l .  But i f * t h i s  space is cons t i tu ted  by t h e  ambient atmos- 

phere ( f o r  example, air  or vabuum, etc.) ,  it is not encumbered by a densimeter 

and does not have t o  be cooled as the  superconductor i tsel f .  I n  the  f i n a l  analy- 

sis t h e  energy is stored i n  a space which cos t s  nothing, 

e 

Role of t he  d i e l e c t r i c  ...................... 
Relationship ( 4 )  shows t h a t  t h i s  s tored energy W: 

- increases with the  volume of the  d i e l e c t r i c  where the  induction B is 

created ( t h e  kind of d i e l e c t r i c  being given); 

- increases with the  square of the  induction ( i n  a volume dv of a 

given d i e l ec t r i c ) ;  

- is, under these conditions,  inversely proportional t o  the  re la t ive 

permeability p, of the  d i e l ec t r i c .  r 

The r e s u l t  is tha t  i n  order t o  s t o r e  high energy dens i t i e s  it is not t o  our 

advantage t o  u t i l i z e  magnetic cores. In  effect :  

2 - If w e  operate  a t  a w e a k  induction B, t he  numerator B of re la t ionship  . 
( 4 )  will be s m a l l  and t h e  denominator w i l l  have a high value because t h e  relative 
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permeability p ' o f  the material u t i l i z e d - w i l l  be high. r 

- Or else, i f  w e  operate a t  a high induction B ( B  > ,25 kg) ,  t he  material 

u t i l i z e d  w i l l  be saturated.  Its r e l a t i v e  permeability p w i l l  then be nearer t o  

1, tha t  is, the  same as t h a t  of the ambient atmosphere, i f  we'remove the core. 
r 

In each of thes? two cases w e  have use less ly  introduced a very heavy mater- /8 - 
i a l  ( i t s  densi ty  being of t he  order of'6000 t i m e s  t h a t  of air)  which w i l l  cause 

some new losses  at t h e  t i m e  of energy release, by hys te res i s  and eddy currents ,  

Energy dens i t i e s  t h a t  can be s tored  i n  t h e  d i e l e c t r i c  

I n  a volume of d i e l e c t r i c  dv t h a t  is s u f f i c i e n t l y  s m a l l  so  t h a t  

..................................................... 

power may be considered constant,  re la t ionship  ( 4 )  can be writ ten: 

the induction 

(5) 

dW 
dv 

By way of example, the  values of t he  energy - stored per u n i t  volume of 

d i e l e c t r i c  (air  or  vacuum) as a function of t he  d i fzeren t  values of t he  induction 

€3, are shown i n  Table 3 .  F o r  the  convenience of comparison they have been given. 

i n . j o u l e / l i t e r  of d i e l e c t r i c  and the  values of induction have been given i n  

kilogauss ( 1  kilogauss = O . l * T e s l a ) .  

TABLE 3 .  

k i l o  gauss 
B 

jou le / l i  ter  
dv 

10 

20 

50 
100 

200 

400 

400 

1 600 
10 000 

40 000 

160 000 

640 ooo 

A t  t he  present t i m e ,  inductions comprised of between 50 and 100 kilogauss 

are commonly real ized.  We still do not know i f  inductions of several hundred 



kilogauss w i l l  be rea l ized  on a l a r g e  s ca l e  and where the l i m i t  wi.11 be s i tua ted .  

Superconductor capab i l i t i e s  l i m i t s  w i l l  be imposed by the  l i m i t s  of the  c r i t i c a l  

f i e l d  of the  material under the  conditions of use. I t  is very important t o  note 

t h a t  each t i m e  w e  prepare materials presenting higher cr i t ical  inductions, the  

energy s tored  per u n i t  volume of d i e l e c t r i c  increases as the  square of t h e  

induct ion. 

Qf a l l  t he  ex is t ing  methods, a l l  t he  f igures  given i n  Table 3 are very sup- 

e r io r  by some tens  of joules  per l i t e r  t o  present s torage capab i l i t i e s  of some 

condensers, 

The real  problem of optimization of energy s torage .................................................. 
A t  the  present t i m e  superconductor materials are r e l a t i v e l y  troublesome. 

Under these conditions,  w e  can have an i n t e r e s t  i n  s to r ing  a given energy by 

not seeking t o  s t o r e  it i n  the  minimum volume of d i e l e c t r i c ,  r a the r ,  w e  would 

seek to  use the  minimum quant i ty  of superconductor material. 

This problem has been examined c4.1 i n  the  case where the  s torage c i r c u i t  is 

const i tuted by a c o i l  winding i n  torus  form. Such a c o i l  winding permits recov- 

ery of t he  same order of magnitude t h a t  w e  would expect with a l l  sho r t  c o i l s  i n  

avoidance of "end ef fec ts"  i n  superconductors and karrying out  r igorous calcu- 

la t ions.  P rac t i ca l ly ,  w e  w i l l  p re fer  i n  numerous cases t o  use sho r t  c o i l s  

corresponding t o  c o i l  windings more eas i ly  realizGd and carrying fewer encum- 

brances, W e  are going t o  give here only the  r e s u l t s  of calculat ions t h a t  we 

have worked out  concerning the  torus  geometry. 

L9 

0 

Figure 1 represents  t he  torus  and its axis of revolution ( A ) .  The torus  

c o i l  is const i tuted by m e a n s  of a superconductor uniformly d is t r ibu ted  and of 

negl ig ib le  thickness owing t o  the  dimensions of t he  torus. r and r designate,  1 2 
respect ively,  t he  radius  of t he  throa t  r i n g  of t h e  torus  and the  rad ius  

circle of l a r g e s t  diameter. 

In  order t o  simplify the  text w e  se t  up the  following: 

2 u = -  
1 

r 

r 

The induction produced by a c o i l  winding is zero at  the  outs ide of 

to rus ,  and d i f f e ren t  from zero at  t h e  inside.  I t  is a m a x i m u m ,  and the  

of a 

( 6 )  

the  

same 
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value,  a t  a l l  points  on the  th roa t  circle. However- t he  superconductor material 

is used, it is necessary t h a t  t he  induction be less on the  throa t  circle of the  

torus ,  but very near t he  cr i t ical  induction of t he  material. 

The cr i t ical  induction of a superconductor w i r e  i s  r e l a t ed  t o  the  current  

by a function given as an example by the  curve of PJate 1, r e l a t i v e  t o  & 

in te rmeta l l ic  a l loy  Nb, 25 percent Zr.  This function depends on the  way i n  which 

t h e  superconductor is used, and d i f f e r s  according t o  va r i a t ion  of a piece of 

rec t i l inear  w i r e  or superconductor w i r e  co i l .  I n  the  la t ter  case w e  observe a 

Ifdiminution e f fec t"  phenomenon which has been the  object  of numerous s tudies  

conducted by researchers who concentrate on the  production of magnetic f ie lds .  

H e r e  are r e s u l t s  t h a t  we have obtained ( 4 ) :  ( t h e  numerical appl icat ions 

which follow these r e s u l t s  are based on an actual  cable  of 7 st rands Nb, 25 

percent Z r  (U.S.  superconductor) and the cha rac t e r i s t i c s  shown i n  P la t e  1, 

although the  Nb S is more in t e re s t ing  and w e  w i l l  speak of it a t  the  end of 

t h i s  account). 
3 n  

Geometric dimensions of the  torus: 

r = i n  meters (see Figure 1) 1 
= 4rr x 10-7 ( u n i t s  MKSA) 

= defined by re la t ionship  ( 6 )  EY 

W = t o t a l  s tored  energy ( jou le )  - /lo 
B = m a x i m u m  induction (Tesla) according t o  the  material cha rac t e r i s t i c s  m 

( f o r  example, P l a t e  1 f o r  Nb, 25 percent Z r )  
* 

This re la t ionship  connects the  form and geometric dimensions of t he  torus  

(CY and r , )  t o  the  t o t a l  s tored energy W and t o  the  cha rac t e r i s t i c s  of t he  mater- 
I 

i a l  (B  i n  the  conditions 

from t h e  m e a n  induction). 
m u t i l i zed ) .  The ca lcu la t ion  is approximate (W is deduced 
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k r2 

Figure 1.' Torus: 

In  t h i s  expression the  f i r s t  f ac to r  is constant and the  second is a function 

of CY, some example values of which a r e . l i s t e d  i n  Table 4. 

TABLE 4. 

- C Y  1.5 2 3 5 10 

3 
a+ 1 3.42 1.44 1 0.72 0.51 

2 
' ( C Y - 1 )  0 

Density of energy i n  s tored volume ('energy s tored per u n i t  volume ................................................................. 

W - = densi ty  of s tored energy ( in jou le  per  l i t e r  of t he  superconductor) 

= m a x i m u m  current  (ampers) i n  t h e  superconductor from t he  character-  
i s t i c s  of t h e  material 

0 

V 

I m 

B and W as i n  formula (7) m 

Density of energy i n  s tored mass (energy s tored  per u n i t  of m a s s  of ................................................................... 
t he  supercond.uctor) ------------------- 



w - = m a s s  densi ty  of s tored energy ( i n  joule/kg of superconductor m 
p = spec i f i c  m a s s  of superconductor (kg/dm ) 3 * .  

In  the  case where the  spec i f i c  m a s s  of the  superconductor is near tha t  of /11 - 
3 niobium ( p  = 8.7 kg/dm ) re la t ionship  ( 9 )  becomes: 

Dur a t  ion of S t o r  age ------------------- 
If w e  keep the  temperature a t  a low value o r  equal t o  tha t  f o r  which the  

system has been calculated,  the  duration of s torage is p rac t i ca l ly  unlimited f o r  

a conveniently mounted s torage system ( jo in ing  su i t ab le  superconductors, i f  

necessary and s t a b i l i z a t i o n  of excursion f lux ) .  

P 

p = u n i t  p r i ce  of superconductor material (F/meter of cable ,  o r  of 

= cos t  of s tored in s t a l l ed  jou le  (F/joule) 

wire,  etc.) 

, CY, Im, Bm, W as described above 

This re la t ionship  connects: 

2- t he  p r i ce  of s tored  in s t a l l ed  jou le  
2 

t o  t he  geometric form fac tor  of the  s torage torus  

t o  the  e l e c t r i c  cha rac t e r i s t i c s  of t he  superconductor 1 

m 

t o  the  un i t  p r i ce  of the  superconductor p 

and t o  the  t o t a l  s tored energy - 1 

The form fac to r  -(/= of the  torus  is minimum f o r  (Y = 3 ' ( t h a t  is, 

2 

1 

r 
_I = 3 )  - r I t  is then equal t o  2 (which gives t h e  lowest value t o  P) , but varies - /12 
very l i t t l e  when (Y var i e s  i n  a certain range as shown i n  Table 5. 
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TABLE 5. 

cy 1.5 2 3 5 10 

2.32 2.08 2 2.08 2.37 2 3 
( C Y + l )  
a- 1 

Prac t i ca l ly ,  €or the  convenience of making c o i l s ,  w e  are not able  t o  choose 

cy too l a r g e  ( t h a t  is, r 

to rus  form fac to r  then increases rap id ly  and introduces too l a r g e  var ia t ions  i n  

p r i ce  f o r  a s l i g h t  dispers ion i n  the  manufacturing'. W e  see, then, t he  values 

too d i f f e ren t  from r 2 1 nor too near t o  1, because the  

of t h e  torus  form fac to r  remain near 2. Relationship (11) is wri t ten under these 

conditions : 
I 

1 1 P = 2000 P -  

m m 

(12) 

with the  same notations and un i t s  as i n  (11). 

Therefore: 

- If w e  t r y  t o  s t o r e  the energy by means of i n s t a l l a t i o n s  having as ................................................................. 
l i t t l e  encumbrance as possible: (formula 7) 
as much as possible ,  and therefore ,  f o r  a given energy W t o  operate a t  an induc- 

it w i l l  be necessary t o  minimize r 
1 .............................. 

t i o n  B as  high 

values of B as 
m 

m 
(formula 11) of 

duct I m 

as possible  (Table 11 ,  and t o  choose a material possessing 

high as possible ,  But under these conditions,  t he  p r i ce  P , 

t he  s tored  in s t a l l ed  jou le  w i l l  not  be minimum because the  pro- 

w i l l  not then generally be a m a x i m u m .  

- If w e  t r y  t o  s t o r e  the  energy by means of i n s t a l l a t i o n s  which are ................................................................. 
as l i t t l e  troublesome as possible:  it w i l l  be necessary t o  choose a character- ................................. 
i s t i c  operating point  of t he  material such t h a t  the.product 

I m  
m a x i m u m ,  

t h a t  one i n  which t h e  r a t i o  of un i t  p r i ce  p t o  t h e  m a x i m u m  value of the  product 

I m  
t h e  compromise t o  m a k e  between the  p r i ce  of the  materials (p  low) and t h e i r  

The necessar i ly  selected material w i l l  be, among the possible  materials, 

w i l l  be minimum (formula 11). The minimum value of t h i s  r a t i o  def ines  

The minimum value of t h i s  r a t i o  w i l l  not 
( I l3C high). performance 



correspond, generally, t o  the  maximum value of B T H i s  s i g n i f i e s  t h a t  the  

encumbrance of t he  torus  (formula 7) w i l l  no t ,  then, be a minimum. 
m 

Energy Release -------------- 
W e  can, f o r  ins tance ,  accomplish t h i s  according t o  the  method given i n  

reference C61. 

A n  induction c o i l  acts as  a cur ren t  generator '  (when a condenser acts as a 

voltage generator). 

than a condenser f o r  supplying a d iss ipa t ing  c i r c u i t  i n  which the  impedance 

varies during t h e  discharge, such as a tube f l a s h  o r  a plasma. Besides, we can 

very eas i ly  obtain un-oscil lating, diminished disdharges, even i n  some rapid 

discharges of t h e  order of microseconds C91 C73, which can be very in te reg t ing  

j u s t  f o r  the supply of g a s  tubes and plasmas. 

An induction c o i l  supereonductor is even be t t e r  adapted 

0 

The adaptation of impedance is easy t o  do on a d i s s ipa t ive  charge. For 

example, ( re la t ionship  4 )  a given energy W can be s tored  i n  an induct ion-coi l  

L ( r e l a t i v e l y  weak and const i tuted by numerous superconductor cables i n  p a r a l l e l )  

traversed by a high t o t a l  current  I ,  o r  e n t i r e l y  i n  an induction c o i l  L (rela- 

t i v e l y  high and const i tuted by numerous turns  of t h e  same cable i n  series) under 

a current  which can then be r e l a t i v e l y  weak .  Thus, w e  w i l l  be able  to  r e a l i z e  

a superconductor c i r c u i t  which w i l l  s t o r e  the  desired energy d i r e c t l y  a t  t o t a l  

current  I t h a t  w e  wish t o  obtain a t  the  t i m e  of the  discharge. 

e 

The voltage appearing a t  the  terminals of t he  induction c o i l  a t  t he  t i m e  

of t he  discharge has f o r  an expression V ( t )  = L - d l ( t ) .  

obtain much higher voltages a t  the  beginning of' t he  discharge, as w e  w i l l  open 

the  s torage c i r c u i t  more rap id ly  and the  impedance of t he  charge w i l l  be higher. 

We w i l l  be able  t o  
d t  

O r  again, t he  energy W can be s tored i n  an induction c o i l  L of a given 

value under a given current  I ,  and released by the  intermediary of a conductor 

c i r c u i t  connected by. induction t o  the  superconductor s torage c i r c u i t ;  t he  

assembly functioning exact ly  as a transformer (without i ron)  a t  the  t i m e  of the  

discharge. Thus, w e  w i l l  be able ,  whatever t he  values of induction and s torage 

current ,  t o  obtain a t  t h e  terminals of t he  connected conductor windings....very 

high voltages a t  very w e a k  currents  (a  great deal  higher than w e  can obtain with 

b a t t e r i e s  of condensers). In  pa r t i cu la r ,  s i m i l a r  c i r c u i t s  w i l l  be able  t o  
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r e l ease  d i r e c t l y ,  e i the r  voltages or extremely high cur ren ts ,  i n  t he  same t i m e  as 

the  very high voltages and very intense currents ,  by the  intermediary of d i f f e ren t  

secondary c i r c u i t s  d i r e c t l y  connected t o  the  superconductor s torage c i r c u i t .  W e  

have effected i n  these p o s s i b i l i t i e s ,  numerous experiments which have not y e t  

permitted us t o  suspect t he  l i m i t s .  

We have seen above t h a t  t he  re lease  of th i s .energy  would be accomplished 

i n  a very sho r t  t i m e .  W e  have successful ly  rea l ized ,  at weak energies,  some tests 

with t i m e s  of t he  order of microseconds following a de t a i l ed  study of t h e  mechan- 

i s m  of phenomena c91 C71. This problem does not present pa r t i cu la r  d i f f i c u l t i e s .  

I t  happens tha t  it is possible  t o  e s t ab l i sh  the  r e l ease  of s tored  energy 

under considerable power....and i t  is d i f f i c u l t  a t  t he  present t i m e  t o  estimate 

the  l i m i t s .  I t  appears .that as ide from explosives, each other  means of s torage 

cannot be competitive on the  same power leve l  with superconductors. 

when energy is released i n  d i s s ipa t ive  charges some very high y ie lds  can be 

obtained and w e  w i l l  be able  t o  c i te  our t e s t s  a t  weak energies a t t a in ing  y ie lds  

of nearly 100 percent C91. 

Besides, 

* 

Example of possible  r ea l i za t ions  ................................ 
Pla t e  1 shows the  cha rac t e r i s t i c  I ( B  of t he  material (Nb, 25 percent Z r )  m m  

which has been used f o r  t he  numerical applications;  i n  the  t a b l e  above w e  have 

grouped the values of t he  product I (which occurs i n  r e l a t ions  8, 9 ,  10, 
I m 

11, 12) f o r  d i f f e ren t  values of I and B supporting the  cha rac t e r i s t i c  I ( B  >. 
W e  can s ta te  t h a t  t he  underlined cha rac t e r i s t i c  r e l a t i v e  t o  Nb S should give 

some higher values t o  t h e  produpt I fi. The Nb S i n  question is, therefore ,  

more in t e re s t ing  than Nb, 25 percent Zr, which w e  have used as an example con- 

m m  m m 

3 n  

m 3 n  
- /14 

cerning the  densi ty  of s tored energy. 

condition t h a t  t he  un i t  p r i ce  of Nb S 

25 percent Z r ) ,  t he  diminution of s torage c o i l  dimensions (formula 7) B .... can 

a t t a i n  higher values f o r  Nb S . 

The p r i ce  per i n s t a l l ed  jou le  ( a t  the  

does not  exceed by too much t h a t  of Nb, 
3 n  

m’ \ 

3 n  

I n  the  case of Nb,.25 percent Z r  taken as an example, we  e s t ab l i sh  t h a t  t he  

product Im fi is maximum and p rac t i ca l ly  constant f o r  B between 5 and 40 
kilogauss. If w e  wish t o  reduce the  p r i ce  of t he , in s t a l l ed  jou le  t o  a minimum, 

it w i l l  be necessary t o  conceive the  c o i l  functions f o r  t h i s  region, and i f  we  

m 
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. 
wish a t  the  same t i m e  t o  have a c o i l  as L i t t l e  encumbered as possible ,  it w i l l  be 

necessary t o  choose the  induction B as high as possible,  ( r e l a t i o n  71, t h a t  is ,  

B = 40 kilogauss i f  w e  do not wish t o  raise t h e  p r i ce*of  in s t a l l ed  joule. W e  

s e e  under these conditions of optimization t h a t  t he  region of mater ia l  use is 

d i f f e ren t  from tha t  which corresponds t o  the  attainment of intense magnetic f i e lds .  

m 

m 

P l a t e  2 shows sime numerical r e s u l t s  re la t ive  t o  the  respect ive storage of 
6 8 10 and 10 joules  by means of Nb, 25 percent Z r ,  whose cha rac t e r i s t i c  is given 

on P la t e  1. 

than these values. ) 

- 
( I n  using Nb S w e  would obtain geodretric dimensions very much less 

3 n  

P la t e  3 compares the  p r i ce  of t h e  s tored i n s t a l l e d  jou le  as  a function of 

the  i n s t a l l e d  energy, between electrochemical b a t t e r i e s ,  condensers and super- 

conductors. 

For b a t t e r i e s  the  p r i ce  per joule  increases a t  the  same rate as  t h e  s tored 

energy because of t h e  connections which become more and more troublesome ( i f  w e  

wish t o  continue t o  obtain the  same s p e c i f i c  f o r  each element i n  proportion t o  

increasing the  t o t a l  capaci ty  of t he  bat tery.  

For condensers it is a lso  apparent t h a t  connection d i f f i c u l t i e s  begin with 

a ce r t a in  s tored  energy level. 

For the  superconductors %$e p r i ce  per  i n s t a l l e d  s tored  jou le  is given by 

r e l a t i o n  (11) and decreases as t h e  cube roo t  of t h e  i n s t a l l e d  energy; i f  we add 

the  p r i c e  of cryogenic apparatus necessary ( l i qu id  helium and cryos ta t ,  etc.) ' 

f o r  compensating t h e  loss  of heat ,  it is necessary t o  s ta te  t h a t  t h e  greater the  

in s t a l l ed  energy..,.the greater the  increase i n  p r i c e  which r e s u l t s  when the  

cryogenic is w e a k ,  because i f  t he  i n s t a l l e d  energy depends on the  volume of t he  

s torage c i r c u i t  t h e  r e f r ige ra t ing  loss  depends as a f i r s t  approximation on the  

ex ter ior  surface of t he  c i r c u i t .  

Mater i a1 opt i m i  z a t  i or. ..................... 
A material w i l l  be the  more in t e re s t ing  i f  i t  permits a given energy s torage 

a t  a lower p r i ce  and with less encumbrance. According t o  the  u t i l i z a t i o n  made, 

t h e  compromise t o  adopt between p r i ce  and encumbrance w i l l  be d i f fe ren t .  O f  a l l  . 
the  ways t h a t  are possible ,  w e  should reference formula (7) concerning encum- 

brance, and formula (11) concerning t h e  p r i c e  of t h e  s tored  joule.  
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Performance and p r i ce  of material  ................................. 
For convenience, material must be used a t  less than 4.2 degrees K (temper- 

ature of boi l ing l iqu id  helium under normal pressure9. 

We have already seen t h a t  i n  order t o  make r (formula 7) minimum, w e  must 
1 

In  order t o  make P (formula 11) minimum, it is 

make use of a material which w i l l  permit the  attainment of inductions B with 

values as  high as  possible. 
m 

necessary t h a t  the  expression be minimum. It is necessary, therefore ,  

m 
t o  use a material  of which the  un i t lp r i ce  p divided by its electrical performance 

1 m % m a x i m u m )  is minimum. 

I t  i s  not necessary t o  eliminate the  use of. severa l  d i f f e ren t ,  judiciously 

arranged mater ia ls  i n  order t o  s a t i s f y  t h e  conditions i n  which r and P a re  as  

low as possible. 
1 

Forming: the  material  w i l l  be able  t o  be used i n  the  form of w i r e ,  ------- 
cables ,  r ibbons,  shee ts  or coatings, The choice w i l l  be made as a function of 

t h e  cos t  p r i c e  of i n s t a l l e d  jou le  (formula 11) and of the  electrical s t a b i l i t y  

obtained. 

The superconductor should be i so la ted ,  incased or not  incased i n  a material  

t h a t  is a conductor of e l e c t r i c i t y  and hea t ,  s ince  it w i l l  have a unique function 

of s torage or be used as  a c i r c u i t  breaker. In  t h i s  l a s t  case i t  is  required 

t h a t  the  material possess, i n  the  normal s t a t e ,  a res i s tance  as high as possible  

for permitt ing the  introduction of a res i s tance  as 'high as possible ,  i n to  t h e  

s torage c i r c u i t  a f t e r  "opening" C81. 

Mechanical properties:  I t  should be s u f f i c i e n t l y  s o l i d  ( f o r  example, ..................... 
2 

This problem 

at 100 kg it exerts on t h e  c o i l  a magnetic pressure of t h e  order of 400 kg/cm 

which extends the  ax ia l  compression and makes' it crack r ad ia l ly ,  

is  w e l l  known i n  the  production of intense magnetic f i e l d s ) .  

I t  should be s u f f i c i e n t l y  workable: I f  it is a question of w i r e ,  cables ,  

ribbons and shee ts ,  i t  is necessary t h a t  the  reel  mechanism be furnished. If i t  

i s  a question of t h i n  coatings it is necessary t h a t  a spreader on convenient 

supports be furnished. 



New Perspectives ---------------- 
I t  is useless  t o  emphasize the  i n t e r e s t  which r e s u l t s  from t h e  discovery of 

new mater ia ls  or of materials possessing new cha rac t e r i s t i c s ,  usable f o r  example 

a t  higher temperatures or possessing more cr i t ical  pressure charac te r i s t ics .  

I t  is necessary t o  note t h a t  t he  in t e re s t ing  materials have only been used 

s ince  about 1960 ( f o r  t he  production of magnetic f i e l d s )  and t h a t  i n  some years 

considerable progress has been made; a l so ,  t h a t  these questions are poorly 

understood along with t h e  new technology, 

On the  o ther  hand, there  are years i n  which w e  have envisaged the  exploita- 

t i o n  of t h i n  coatings. 

permit a considerable increase i n  the  s torab le  energy densi ty  per  u n i t  m a s s  of 

t h e  superconductor and t o  lower proportionately the  cos t  p r i ce  of s tored i n s t a l l e d  

joule  while increasing t h e  s t a b i l i t y  of t h e  system. 

Some tests 'n'ave already been s t a r t e d  [lo]. They should 

A s  of now, superconductors ac tua l ly  permit t he  conception of s torage c i r c u i t s  

and r e l ease  of energy having very d i f f e ren t  configurations and cha rac t e r i s t i c s  

from those t h a t  w e  can conceive with condensers. W e  can, f o r  example, d i r e c t l y  

envisage experiments i n  which there  would not be connections between generator 

and energy rece iver ,  and where the  generator and receiver  would have a common 

p a r t  or would be combined. W e  cannot, f o r  example, envisage such experiments 

a t  very great energies with some condensers because i n  order t o  s t o r e  important 

energy by m e a n s  of condensers, and avo'iding the  use of unreal izable  s torage 

voltages,  w e  are bringing in to  use high capacitances of t he  order of pF,  and these 

capacitances a r e  very superior  t o  the  proper capacitance of a c i r c u i t  confining 

a plasma, f o r  example. .This is not t he  same for t h e  induction c o i l  c111. 

CONCLUSION 

The present concept of storage and energy release is saturated with old ideas ,  

which, as a matter of f a c t ,  havebeen created over t he  years as the  measure of 

exis t ing  energy storage....the superconductors, s t a r t i n g  from now, put a t  our 

d ispos i t ion  e n t i r e l y  new solut ions and even tliough it is premature t o  t e l l ,  

these same superconductors have surpr i ses  i n  s t o r e  f o r  us. 
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Pla t e  1. Charac te r i s t ics  of Supercon's (USA)  Nb, 25% Z r  
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Pla t e  2, &ample o f  r ea l i za t ion  with the  Nb, 25% Z r  cable ( U S A )  

Conditions under which used: BM = 4 T e s l a  (according to Pla t e  1). 
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Pla t e  3 .  Pr ice  
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